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FOREWORD

The Quiet Clean Short-haul Experimental Engine (QCSEE) Program is
currently being conducted by the Gemeral Electric Company, Aircraft Engine
Group under NASA Contract NAS3-18021. The preliminary design work was per-
formed under the direction of the NASA Project Manager, Mr. Raymond J. Rulis,

Lewis Research Center.

This report covers the preliminary design effort of under~the-wing (UTW)
and over-the-wing (OTW) propulsion systems. Preliminary designs of experi-
mental and flight versions of both propulsion systems were completed during
the first six months of the contract, and an oral review of the designe was
conducted at Lewis Research Center on June 25 and 26, 1974.

The preliminary design phase was approved by the NASA Project Manager on
July 3, 1974, permitting the program to proceed through the detail desigr

phase.

The report is covered in two vclumes plus a separate appendix (Appendix
B) containing information for government use only.
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SECTION 2.0

SUMMARY

The QCSEE Program has progressed through the planning and preliminary
design phases, resulting in the definition of specific propulsion system
configurations that are expected to meet all of the stated program objectives.
This report desctribes the experimental propulsion systems to be built and
tested in the program, as well as the ultimate flight systems that could grow
out of the program in the post 1978 time period.

Certain compromises are planned to control cost of the experimental pro-
gram. The contractor testing will be limited in duration with further testing
to be conducted by NASA at Lewis Research Center. Also, material substitutions
and "boiler plate" components are specified in certain areas to reduce program
cost. However, these areas have been carefully selected such that these com-
ponents will not adversely effect key technology areas.

2.1 PROGRAM OBJECTIVES

The major purpose of the QCSEE Program is to develop and demonstrate the
technology required for propulsion systems for quiet, clean, and economically
viable commercial short-haul aircraft. This comprehensive program includes
the following objectives:

° To develop the propulsion system technology which will permit a
short-haul aircraft, powered by four engines with a total installed
thrust of 403,000 N (90,000 1b), to achieve the system noise goal of
95 EPNdB along a 152 m (500 ft) sideline and to minimize the ground
area (footprint) exposed to objectionable noise levels.

. To demonstrate a propulsion system which will meet advanced pollution
goals under all operating conditions.

° To develop the technology for very high bypass ratio engines with
quiet low pressure ratio geared variable-pitch fans.

. ° To develop the technology required to meet propulsion system perfor-
= mance, control, weight, and operational characteristics.

. ° To develop the material, design, and fabrication technulogy for quiet

' propulsion systems which will yield engine designs which have an
uninstalled thrust-to-weight ratio greater than 6 to 1; and installed
thrust-to-weight ratios greater than 3.5 to 1.

° To develop the technology which will yield engine thrust response
characteristics required for powered 1lift operations. 4
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SECTION 1.0

INTRODUCTION

The Quiet Clean Short-haul Experimental Engine Program provides for the
design, fabrication, and testing of experimental, high-bypass, geared turbofan
engines and propulsion systems for short-haul passenger aircraft. The overall
objective of the program is to develop the propulsion technology required for
future externally blown flap types of aircraft with engines located both

under~the-wing ard over-the-wing. This technology encompasses the following
elements:

Variable-pitch and fixed-pitch fans
Geared fans

Low noise

Low exhaust emissions

High thrust-to-weight ratio
Composite fan blades

Composite fan frames

Lightweight low drag nacelles
Digital electric controls

Thrust reverse means

Rapid response

Low fan pressure ratio, low fuel consumption cycles
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® To provide the technology which will permit the design of quiet,
efficient, lightweight thrust reversing systems for powered 1lift
aircraft.

o To provide the technology to permit the design of integrated engine
and nacelle installations which will be tolerant to aerodynamic dis-
tortion expected with operating flight conditions such as high cross-
winds, large angles of attack, and side slip, and still provide good
cruise performance.

° To provide the digital electronic engine control technology required
to improve engine and fan pitch control, thrust response, operational
monitoring, and to relieve the pilot's workload especially during
powered 1lift flight operations in the terminal area.

2.2 SPECIFIC TECHNICAL OBJECTIVES

The following specific design objectives have been established for flight
and experimental UTW and OTW propulsion systems:
2.2.1 Noise

The UTW and OTW experimental engines shall be designed to meet noise
objectives on the basis of four-engined, 403,000-N (90,000-1b) thrust aircraft.

Takeoff and approach - 95 EPNdB @ 152 m (500 ft) SL
Max Reverse Thrust* - 100 PNdB @ 152 m (500 ft) SL
% 35% Max Forward thrust

The two conceptual flight design engines will meet these same noise objec-
tives when installed on a typical short-haul commercial aircraft.

The design shall also minimize the acoustic footprints for both engines.

Methods for scaling engine noise, adjusting to flight conditions, and
including wing/flap interaction effects are specified in Appendix A.

2.2.2 Pollution

The engines shall be designed to meet the exhaust emission standards

specified for 1979 aircraft by the EPA.

2.2.3 Thrust-to- eight

The experimental engines shall be designed to meet the following thrust
and thrust-to-weight objectives.




UTW OTW
Uninstalled Installed Uninstalled Installed

Thrust 81,000 N 77,200 N 93,200 N 90,000 N
(18,300 1b) (17,400 1b) (21,000 1b) (20,300 1b)

Thrust/wt. 6.2 4,3 7.4 4.7

Uninstalled thrust includes all engine internal pressure losses up to the
nozzle throat; installed thrust includes additional losses due to inlet ram
recovery and core cowl scrubbing drag.

Uninstalled weight includes the dry weight of all engine compcnents and
engine accessories. Installed weight includes the following additions:

Inlet and inlet anti-icing system

Exhaust ducts, nozzles, and thrust reverser

Fan duct and splitter

Engine Mounts to interface with pylon

Thrust Reverser and nozzle controls and hydraulic system
Fire detection and extinguishing system

Drains, vents, and oil cooler

Instrumentation

Thrust/weight shall be representative of a flight engine design. This shall
include analytical predicted flight weight of all boiler plate and nonflight
design components.

2.2.4 Thrust Reversal

The UTW and OTW propulsion systems shall provide the following thrust
reversal capability:

. Operation down to 5.144 m/sec (10 knots) )

° Max. forward to max. reverse thrust transient
in less than 1.5 seconds

° At least 35% static takeoff thrust in reverse

° Noise levels as specified in Section 2.2.1

2.2.5 Engine Bleed

The engines shall be capable of safely providing up to 13% engine core
bleed.

2.2.6 Power Extraction

The engines shall be capable of supplying a minimum of 1640 W/4448 N (2.2
horsepower per 1000 1b) of installed thrust for customer takeoff power.,




& 2.2.7 Dynamic Thrust Response

The engine thrust response shall be designed to meet an acceleration from
627% to 95% thrust in one <econd [sea level to 1830 m (6000 ft) altitude].

2.2.8 Distortion Tolerance

The engine shall be capable of satisfactory operation at inlet upwash
angles of 0 to 50°, with 18 m/sec (35 knot) 90° crosswinds.

2.2.9 0il Consumption

Engine oil consumption shall not exceed 0.906 kg/hr (2 1b/hr).

2.2.10 Dumping

No fuels or lubricanis shall be dumped.

2.2.11 General Design Criteria

In addition to the specific objective listed above, the flight engines
shall meet the following general criteria:

l. The propulsion system shall be designed for ground static, wind
tunnel, and altitude chamber operation.

2. The propulsion system shall be designed for flight operation except
in specific areas where nonflight hardware can be used to save costs.

3. Propulsion system characteristics, such as temperatures, specific fuel
consumption, and overall pressure ratio shall be selected to be appro-
priate for sh ‘t-haul commercial aircraft.

4.  All propulsion system components shall be designed for life which is
compatible with expected commercial short-haul operation.

5. The propulsion system control system shall be designed with digital
logic and signal paths capable of interfacing with an aircraft on-
board flight digital computer. The control system shall be designed
to provide selectable programmed power management and failure indica-
tion and/or corrective action over the entire propulsion system oper-
ating envelope.

6. The propulsio systems shall be designed with the objective of
achieving high performance, but it is not essential that hsrdware
development be carried to the point where ultimate performance is
achieved for the experimental propulsion systems. The Contractor
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shall show that his analytical extrapolation of performance data

to a fully developed propulsion system ia reasonably accurate, and

that deviations in performance do not significantly affect acoustic

or pollution characteristics of the experimental propulsion systems.
Nacelles shall be designed with the following features:

1. - accurate representation of external and internal aerodynamic
contours of flight nacelles.

2.  Accurate acoustic representation of flight-type designs.

3. A1l electrical, fuel, oil, cooling, fire detection and prevention,
control, and instrumentaion systems required to test the propulsion
systems.

4, Convenient access for maintenance.

The propulsion systems shall be designed for the following maintenance
features:

1. The engine shall be easily removable from the nacelle without
requiring removal of the fan exhaust duct once it is installed,

2. The engine shall be capable of being trimmed on a test stand with
no additional trimming required if iistalled on an alrcraft.

3. Accessories shall be located for easy inspection.

4.  Access to borescope ports shall be provided without requiring
removal of any engine component.,

5. Any propulsion system accessory shall be replaceable in 45 minutes.

6. Fans shall have an even number of blades, and blades shall be capable
of rapid inspection and replacement.

7. Modular construction is desired to facilitate maintenance.
The propulsion systems shall be designed to perform within the flight
maneuver forces envelope per MIL-E-5007C data December 30, 1965, paragraph

3.14, with the exception of conditions of catapult flight maneuver and
precession rates.

2.3 OPERATING REQUIREMENTS

The foregoing specific objectives and general criteria are further
amplified by the following propulsion system operating requirements.
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2.3.1 Life and Duty Cycle

The engines shall be desi
15 year period, based

gned for

a useful life of 36,000 hours over a

on the typical 403 km (250

mile) mission cycle shown in

Table 2-1,
Table 2-~I, Flight Duty Cycle.
Altitude Time
_Segment km ft _Mach No, % Power (Min) A Tig%
Start 0 0 0 - 0.5 1.11
Idle~Taxi 0 0 0 4-20 3.1 6.89
Takeoff 0 0 0-12 100 1.22 2.71
Climb 0-7.02 0-23K 0.3-0.5 Max. Cont | 10.0 22.22
Cruise 6.41-7,63 21-25K 0.65-0.74 Max. Cr 14.0 31.11
Descent 7.02-0.3048 | 23-1K 0.7-0.4 F.I., 10.0 22,22
Approach 0.3048-0 1K-0 0.12 65 3.0 6.67
Reverse Thrust| 0 0 0.12-0 Max. Rev 0.08 0.18
Idle-Taxi 0 0 0 4-20 3.1 6.89
45.0 100

Cyclic life shall be based on 48,000 mission cycles plus 1000 gro.and
checkout cycles to full power.

The engine shall be capable of operation throughout the flight envelope
shown in Figure 2-1, unless the extremes adversely affect engine cost or
weight,
occur.

In addition to the above life objectives, the engine must be capable of
meeting an alternate experimental engine life cycle including very high fan
horsepower levels for short periods for fan mapping (Table 2-11).
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Table 2-II, Experimental Duty Cycle.
Time,
4 Np % Fan HP hr %4 Time
105 100 1 0.04
100 140 1 0.04
100 130 15 0.56
100 110 15 0.56
100 100 150 5.59
90 80 500 18.64
75 50 1000 37.29
30 10 1000 37.29
2682 100.0

2.3.2 Flight Maneuvers

The engine and its supports shall withstand without permanent deformation
the conditions specified on Figure 2-2., The calculated weight of the engine
shall be increased by the specified weight allowed for all engine-mounted
accessories.

The engine and its supports shall be designed to not fail when subjected
to static loads equivalent to 1.5 times the value specified above for metal
parts and 3.0 times for composite parts.

The engine shall be capable of withstanding loads caused by seizure of
either rotor with deceleration from maximum rpm to zero rpm in one second.

Composite parts shall be capable of withstanding unbalanced loads caused
by loss of five adjacent composite fan blades at maximum rpm. Metal parts
shall be capable of withstanding loss of one equivalent metal blade.

2.3.3 Flight Attitudes

The engine shall be capable of operating within the range of flight
attitudes shown in Figure 2-3.

2.4 UTW EXPERIMENTAL PROPULS10N SYSTEM

The UTW experimental engine system cross section is shown in Figure 2-4,
The fundamental design criterion which established the unique shape of the
engine is the fan cycle required to meet the noiece objectives. Both the fan
and core engine design pressure ratios were dictated by jet-flap noise con-
straints. The fan contains 18 composite variable-pitch blades with flight
weight disk and blade supporting system. The fan is capable of pitch change
from forward to reverse thrust through either flat pitch or stall pitch. Two
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blade actuation systems, harmonic drive and alternate ball bearing screw types,
are planned with motive power supplied by hydraulic motors. The actuation system
is capable of providing 130°/sec pitch change velocity at takeoff power,

The fan frame is a flight-weight composite structure containing integral
acoustic treatment, outer casing, containment, and fan tip treatment. Thirty-
three integral outlet guide vanes also act as structural struts. The outer
casing of the frame provides both inner and outer nacelle flow paths and also
containment for failed airfoils. Core inlet flow path and mounts for the
forward bearings, gears, radial drive, etc., are also integrally provided.

The reduction gear consists of a six-star epicyclic system having a ratio
of 2.465 and a 100% power rating of 9890 kw (13,256 horsepower). The core engine
and low pressure turbine, including the turbine frame and low pressure shaft, are
F101 components with necessary modifications as described in Section 11.0.

Engine fuel flow, blade pitch angle, and exhaust nozzle area are controlled
by a digital electric control, which modifies the fuel demand of a modified
F101 hydromechanical control. Major engine accessories are mounted on a
boiler plate gearbox on top of the fan frame.

The UTW experimental propulsion system consists of the engine as described
above with added components to make up a complete nacelle package, as shown in
Figure 2-5. The nacelle components include a lightweight composite hybrid
inlet providing acoustic suppression by means of a high throat Mach number
(0.79) and integral acoustic treatment. The composite fan duct, acoustic
splitter, and core cowl are hinged from the pylon to provide access for engine
maintenance. The core exhaust nozzle and nozzle plug are acoustically treated
to reduce aft radiated noise. The fan exhaust nozzle is a variable-area,
four-flap design capable of area change from takeoff to cruise, as well as
opening to a flared position to form an inlet in the reverse thrust mode. The
nozzle flaps are hydraulically actuated.

2.5 UTW _FLIGHT PROPULSION SYSTEM

The UIW flight engine system cross section is shown in Figure 2-6.
Differences from the experimental engine are primarily in material substitu-
tions to save cost in this Program. For example, the following parts would
be titanium rather than steel in a flight engine: fan shaft, gear carrier,
and bearing support cones. The accessory gearbox would use a cast aluminum
casing rather than fabricated steel, and several accessories such as oil tank,
heat exchanger, filters, and pumps would be of optimized design rather than
using available hardware. Several changes have also been postulated in the
F101 core consistent with the lower QCSEE cycle compressor discharge pressure.

The UTW flight propulsion system cross section is shown in Figure 2-7,
Bleed manifolding would be added for the cabin air conditioning and anti-icing °
systems and for any high-lift devices requiring engine bleed air. The flight
system would include a flight-type fire detection and extinguishing system
rather than test facility equipment.

13
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Figure 2-6. UTW Flight Engine System,
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Both the experimental and flight UTW engines are top mounted from a
pylon, with mounts on the fan frame and turbine frame. By opening bypass
duct and core cowl, the engine and inlet can be removed from the pylon in the
downward direction. A hinged accessory cover provides access to engine
accessories located in front of the pylon.

2.6 OTW EXPERIMENTAL PROPULSION SYSTEM

The OTW experimental engine system cross section is shown in Figure 2-8.
The fan contains 28 fixed-pitch titanium blades. The airfoil sections have
been selected as suitable for composite construction in a flight configuration.
The titanium fan disk incorporates a larger cross section than in a flight
configuration because of greater weight of the metal blades.

The OTW fan frame is structurally identical to the UTW frame. Differences
occur in the areas of the blade tip passage and the flow splitter to meet fan
aero requirements,

The OTW reduction gear is similar to the UTW component, except that it
contains eight star gears, has a gear ratio of 2.062 to match the higher rpm
OTW fan to the F101 low pressure turbine, and is rated at 12,880 kw (17,214
horsepower).

The OTW control system is identical with that of the UTW engine except
for different programmed schedules for the different cycle, deletion of the
variable pitch function, and actuation of a target thrust reverser instead of
flare nozzle.

The OTW experimental propulsion system is shown in Figure 2-9. In order
to achieve a major cost saving by utilizing the same test cell, engine
accessory system, and facilities, the OTW propulsion system is top mounted
with the same accessory location as the UTW system. Thus the OTW experimental
engine runs inverted compared to a flight installation. To reduce program
cost, the nacelle components for the OTW system are of "boiler plate"
construction with interchangeable acoustic treatment panels. Because of
greater weight of these components, they are separately supported from the
test stand with flexible joints at the fan frame interfaces. The OTW boiler
plate nacelle components can also be used with the UTW flare nozzle to form a
complete UTW installation. This will be done for initial UTW acoustic develop-~
mental testing.

The OTW prupulsion system incorporates a "D’ -shaped nozzle to spread the
exhaust flow over the wing flaps. Nozzle area is varied by means of doors at
the sides of the nozzle. A target-type thrust reverser is incorporated,
deflecting the jet efflux forward and upward. To avoid impingement of the jet
on the test facility and instrumentation lines, the nozzle will be inverted to
exhaust forward and downward in the initial experimental engine tests. The
exhaust nozzle will be rotatable about the engine centerline such that it can
be installed in the upright, inverted, or 90° attitude as required for subse-
quent NASA testing.

17
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2.7 OTW FLIGHT PROPULSION SYSTEM

The OTW flight engine system cross section 1s shown in Figure 2-10,
Differences from the experimental engine are the same as those cited for the

UTW system; and in addition, titanium fan blades would be replaced by composite
blades, and the disk would be modified accordingly.,

In the OTW flight configuration, accessories would
fairing into the wing leading edge, Therefore,
is located in the bottom core cowl region in the
moved to the accessory gearbox.

be bottom mounted,
the lube scavenge pump, which
top-mounted engines, can be

ght engine are composite materials with integral
acoustic treatment. As in the case of the UTW system, the engine can be
removed from the Pylon by opening bypass duct doors and lowering the engine

and inlet, Engine accessories are located ahead of the bottom pylon, with a
hinged door for access,
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SECTION 3.0

ACOUSTIC DESIGN

3.1 SUMMARY

The preliminary acoustic design of both the UTW and OTW engines has
resulted in configurations which meet takeoff, approach, and reverse thrust
noise goals. Table 3-1 summarizes the noise levels for each engine at the
three design points.

Table 3-I. Summary of UTW and OTW Noise Levels.
° 400,34 Kilonewtons (90,000 Lbs) Thrust
° 4 Engines
Reverse
Takeoff EPNdB Approach EPNdB Thrust PNdB
UTW 94.0 91.5 98.0
OTW 95.0 90,5 100.0
Goal 95.0 95.0 100.0

The noise levels have been obtained by estimating unsuppressed noise from
existing test data of similar fan and core configurations, suppressing the
dominant engine noise sources with the advanced technology concepts to be
developed under the QCSEE program, and extrapolating these levels to inflight
conditions. Jet/flap noise was added to the engine noise levels to obtain
total system or aircraft noise levels.

The preliminary acoustic design effort has attempted to establish UTW
and OTW engine configurations which have balanced suppression in the fan inlet,
fan exhaust, and core. To establish the balanced system suppression, detailed
predictions have been made for these 10 different noise sources:

1, Fan inlet 6. GCears

2. Fan exhaust 7. Flow

3. Turbine 8. Struts
4, Combustor 9. Splitter
5. Compressor 10. Jet/Flap

23
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By defining the various sources which could represent noise floors, treatment
is applied to the engine only to the extent which is beneficial to the total
system,

Figure 3-1 summarizes the main acoustic features of the U™y engine., A
aigh throat Mach number inlet (M =0.79) 18 used ‘o suppress inlet noise at
takeoff., Wall treatment having a length equal to 0.74 fan diameters is added
to provide inlet noise suppression at approach aud in reverse thrust. The
rotor- stator spacing is 1,5 tip chords., 'he vane~blade ratio was selected to
reduce second harmonic noise. Exhaust suppression utilizes inner and outer
wall treatment with varying thickness to obtain increased suppression bandwidth.
A 101.6 cm (40 in.) splitter is required to obtain the desired aft suppression
level. A major concern in the aft duct is noise generated by flow over the
treated surfaces, struts and splitter. To keep these sources below the sup-
pressed fan noise, the duct Mach number is limited to 0.45. Core suppression
utilizes a low frequency side-branch resonator design for combustor noise
reduction with thinner treated panels on the inner and outer walls to reduce
the high frequency turbine noise. Treatment is also applied in the core inlet
to reduce forward radiated compressor noise,

Figure 3.2 summarizes the main OTW engine acoustic characteristics. The
inlet design is the same as the UTW inlet with the treatment panels selected to
match the OTW spectrum. Due to more rotor blades with shorter chords, the
rotor-chord spacing ratio exceeds that of the UTW engine since the vane design
and axial location is common to both engines. This acoustic benefit, however,
is offset to some degree by the lower vane-blade ratio of the OIW engine. 1In
the exhaust duct a shorter splitter is utilized because of increased wall treat-
ment length and wing shielding benefits. As in the UTW design, the duct Mach
number is limited to 0.45. Core treatment incorporates the low and high frequency
components used in the UIW engine.

3.2 DESIGN REQUIREMENTS

The noise requirements for both the UTW and OTW engine are specified as =
total system or aircraft noise level at the operating conditions associated
with takeoff and approach operation. A reversc thrust requirement is also
specified for static aircraft conditioas. These are shown graphically on
Figure 3.3, Specific requirements are given in Tables 3-II and 3-111.

Takeoff noise requirement is 95 EPNAB maximum on a 152.4 m (500 ft) side~
line with the aircraft at 61 m (200 ft) altitude and the engines at 1007 thrust.
Takeoff flap angle and aircraft speed are given in Table 3-II. Also shown in
Table 3~II are inlet angle of attack and upwash angles which must be accounted
for with regard to fan inlet noise generation and high Mach inlet suppression.

At approach, the noise requirement is the same as takeoff but the engine

is operated at 65% thrust. Flap angles, defined in Table 3-11, however are
increased for the powered-1ift approach.

24
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Table 3-1I1I. Propulsion System Reverse Thrust
Static Test Conditions.

UTW Propulsion System

Fan Blade Position
Thrust
Flap Angle

Aircraft Speed

OTW Propulsion System

Thrust
Flap Angle

Aircraft Speed

Through Flat Pitch or Stall
35% of SLS Takeoff
0.524 radians (30°)

0 n/sec (0O knots)

35% of SLS Takeoff
0.524 radians (30°)

0 m/sec (0O knots)




¢ ¢

Tl T e
SNESE SR

§ooooh

G

=2

¢
4.:
M
o,
o e
g
th
'y

< e
o Y % ®

° P
o ‘;wf:":‘g e J\‘f‘—.\

vk

Ry

:
3
',“l
W
1

by
<
©

Reverse thrust noise is limited to
(352 of maximum forward) with the aircra

engine, this can be accomplished by reve
flat pitch or stall,

100 PNdB maximum at full reverse thrust
ft at static conditionms, For the UTW
rsing the fan blades through either

a procedure fur determining inflight noise 1le
established as part of the contract,
establishes the following:

vels from static data has been
This procedure, see Appendix A,

1. 'Jet/flap noise calculation procedure
2. Extrapolation procedures
3. Doppler shift correction
4. Dynamic effect correction

5. In-flight cleanup and upwash angle correction
6. Relative velocity correction for jet/flap noise
7. Fuselage shielding and OTW wing shielding

8. PNdB to EPNdB calculation

This procedure has been used in all noise estimates for the UTW and OTW engines.

3.3 UIW PRELIMINARY DESIGN

System Acoustic Design Considerations (UTW)

Many features of the UTW QCSEE engine designs have been selected based on
the low system noise requirements for a 100,085 kilonewton (22,500 1b) thrust
engine installed in an under-the~wing configuration. The two major noise
sources considered were the fan noise and the jet/flap noise. Forward radiated

ure 3~4, Appendix B).
The data were normalized on the basis of fan inlet weig]

ht flow, a fan funda-
mental tone of 3150 Hz, and a rotor-vane spacing of two chords. This

correlation shows that unsuppressed fan noise in the inlet quadrant can be
reduced with lower tip speed, and further, that tip speeds lower than 366 m/sec
(1200 ft/sec) avoid the increased noise levels due to the multiple pure toues
assoclated with supersonic tip speed fans. The lowest tip speed, 289 m/sec

(950 ft/sec), consistent with the other engine cycle requirements, was therefore
selected for the UTW fan.

3.3.1

Aft radiated fan noise levels have been correlated Primarily with fan
pressure ratio (Figure 3-5, Appendix B) 1In addition to controlling aft fan
noise, the fan pressure ratio also determines the fan Jet velocity, Since the
jet/flap noise is proportional to the velocity to the sixth power, low fan

ced aft system noise levels. Since aft
with acoustic treatment, the fan pressure
the need to achieve low levels of jet

generated fan noise can be suppressed

ratio was selected primarily based on
flap noise,
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Fan source noise reduction features were selected to provide noise reduc-
tion at the source with minimum weight and performance impact,

Rotor-0GV spacing of 1,5 rotor chords was selected in order to reduce
fan source noise levels and minimize the need for splitters in the fan inlet
and exhaust, Wider rotor-OGV spacing would produce an additional reduction,

The variable-pitch fan also provides an additional degree of flexibility
in optimizing the fan performance for minimum noise,

A vane-blade ratio of 1.83 has been selected to minimize the fan tone

second harmonic level which makes a large contribution to the perceived noise
levels,

Table 3-IV shows the major design features in the UIW Preliminary Design
which impact the pProjected noise levels. The engine system trades discussed
above have produced an engine preliminary design which meets the noige goals
of the program as well as the performance and thrust—to~weight-requirements.

3.3.2 Takeoff Noise Constituents

The constituent levels shown are at the angle of maximum noise for the suppressed
engine, thus in the forward quadrant, 1.4 radians (80°) is selected, since the
dominant source, jet/flap noise, is a maximum at that angle. Fan inlet noise

has been suppressed well below the jet/flap noise.

Gear noise and compressor noise are not shown as they were not contributing
noise sources.

These constituent levels were obtained by the steps shown in Table 3-v,
Calculations began with 61 m (200 ft) sideline unsuppressed levels which were
extrapolated to the 152,4 m (500 ft) sideline, 61 m (200 ft) altitude condition
and then adjusted for in-flight corrections per the Appendix A calculation
procedure. Suppressinn was then added to obtain Suppressed in-flight consti-
tuent levels in the forward and aft quadrants, These constituents were then
summed to obtain maximum forward and aft PNdB levels which were converted to a
single EPNdB level per the Appendix A procedure.
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Table 3-1V, UTW Design Parameters,

Number of Fan Blades

Fan Diameter, cm (in.)

Fan Pressure Ratio

Fan Speed, rpm

Fan Tip Speed, m/sec (ft/sec)
Number of OGV's

Fan Weight Flow, kg/sec (1b/sec)
Inlet Mach Number (Throat)
Rotor/OGV Spacing

Treatment Length/Fan Diameter

Fan Exhaust Area, m2 (in.2

)
2 2
Core Exhaust Area, m~ (in. )
Gross Thrust (Uninstalled), kN (1b)
Blade Passing Frequency, Hz
Core Weight Flow, kg/sec (1b/sec)

Fan Exhaust Velocity, m/sec (ft/sec)

Corc Exhaust Velocity, m/sec (ft/sec)

18

180.4 (71)
1.27

3074

289.6 (950)
33

405.5 (894)
0.79

1.5

0.74

1.561 (2420)
0.3315 (514)
81.4 (18,300)
920

31 (69)

198 (633)

232 (744)
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3.3.3 Takeoff Supprgaaion

Inlet

At takeoff, the forward radiated fan noise 1is suppressed by means of a
high throat Mach number inlet. Various tests have been conducted on scale
model fans with high throat Mach number inlets (Figure 3-7, Appendix B). These
tests were conducted with low tip speed fans, below 305 m/sec (1000 ft/sec),
and the results show varying degrees of suppression., At 0.79 Mach number,
which was sclected for the QCSEE design, suppression from 10 to 30 PNdB has
been obtained; for QCSEE, a level of 13 PNdB reduction was applied to ine
forward fan noise. A detailed evaluation of these various data ig currently
in progress and a 50.8 cm (20 in.) simulator test program is planned in 1975
to select the proper high Mach inlet design.

Fan Exhaust

The procedure employed in designing the fan exhaust duct treatment in-
volved both theorctical considerations and empirical experience. The design
involved a series of iterational steps until the maximum suppression within
the imposed constraints was attained. The sequence of steps followed in the
treatment design procedure are givea below,

1. Liner Segment Optimization

° The unsuppressed source Spectra at the desired conditions were obtained,
° The source spectra were Noy-corrected.
] The desired tuning frequencies, fos for the individual liner segments

of the phased treatment were determined from the Noy-weighted spectra
at the defined conditions.

. Liner faceplate parameters were chosen in order to achieve a desirable
(optimum, if possible) value of the resistance,

] The required liner cavity depths were determined from optimum specific
reactances at the chosen tuning frequencies given by

x/pc = ~0,77 H/Ap
where
x/pc = the specific reactance

H = height of the duct, i.e., the distance between the two
opposite walls lined with the same optimized liners.

Superscript number refers to references listed at the end of this section.
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P = density of air

. + exhaust mode
Ap = e(l t i)/fq {~ inlet mode }

and where
Ap = wave length ( including flow effects)
¢ = velocity of sound

M = Mach number

2. Transmission Loss

] At the tuning frequency, fo, peak transmission loss (TLo) per
unit L/H of each liner segmeat was calculated as

TLy = 7/(H/%o) in dB per unit L/H

where
Ao = ¢/fy 18 the wavelength at the tuning frequency
L = the liner panel length
) The effective maximum transmission loss, TLoe, was estimated to be
TLoe = 1.35 (0.8 TLo)/(1 + M)

i.e., 80% effective treatment area was assumed. The factor 1.35

(1 + M) is estimated to account for the effect due to the difference
between the actual flow Mach number, M, in the engine duct and that
associated with acoustic duct test results at 0.35 Mach number.

Figure 3-8, Appendix B, shows maximum suppressions at observed tuning
frequencies in laboratory experiments and engine tests and a predicted maximum
suppression curve. Maximum suppression per unit of treated-length-to-duct-height

to have been used for each frequency (Reference 1). The measured maximum
supnressions correlate quite well with the predicted curve,

Each data point represents the maximum of a measured suppression versus
frequency curve. The measured maxima are directly comparable with the
prediction provided the treatment used in the test actually had the opti